بازاریابی مستقیم با استفاده از خوشه‌بندی فازی مشتریان (مطالعه موردی: یکی از شرکت‎های تلفن همراه)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استاد گروه مدیریت دولتی، دانشکده مدیریت و حسابداری، پردیس فارابی دانشگاه تهران، قم، ایران

2 دانشجوی دکتری مدیریت آموزشی، دانشگاه آزاد تهران مرکز، تهران، ایران

3 دانشجـوی دکتـری مدیریت صنعتـی، دانشـکده مدیریت و حسابداری، پردیس فـارابی دانشگاه تهـران، قـم، ایران

چکیده

هدف: در این پژوهش مشتریان یکی از شرکت‎های خدمات‎دهنده تلفن همراه خوشه‎بندی شده‎اند. داده‌هایی که از این مشتریان جمع‌آوری شده است، شامل سه بخش اطلاعاتی است: بخش اول شاخص‌های انتخاب شده برای اجرای تحلیل خوشه‌بندی است؛ بخش دوم شامل اطلاعاتی درباره میزان مصرف مشتریان یاد شده از انواع سرویس‌های قابل ارائه می‎شود و بخش سوم اطلاعات سایر سرویس‌های تلفن همراه است.
روش: این تحقیق از نظر هدف در دسته پژوهش‎های کاربردی قرار می‎گیرد و از نوع تحقیقات توصیفی ـ پیمایشی است. پس از اجرای خوشه‌بندی فازی و بررسی معیارهای کارایی، دو خوشه مناسب تشخیص داده شد؛ در خوشه اول که اغلب خانم هستند مشتریانی با درآمد پایین‌تر، ثبات شغلی کمتر و وفاداری کمتر به شرکت قرار دارند و در خوشه دوم که اغلب مرد هستند، مشتریانی با درآمد بالاتر، ثبات شغلی بیشتر و وفاداری بیشتر قرار گرفتند.
یافته‎ها: نتایج پژوهش نشان‌ داد در مجموع استفاده از خدمات تلفن راه دور برای شرکت بیشترین و شبکه بی‌سیم کمترین میزان درآمدزایی را داشته است و سازمان برای ارائه استراتژی‎های بازاریابی توجه چندانی به آن ندارد. خدمات جانبی پیجینگ و پست صوتی بیشترین درخواست و انتظار مکالمه، داشتن چند خط همزمان و انتقال مکالمه، کمترین درخواست مشتریان است.
نتیجه‎گیری: نتایج این پژوهش در بخش‌بندی بازار تلفن همراه و تعیین استراتژی مناسب برای هر بخش به‌منظور توسعه بازاریابی مستقیم بسیار مفید است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Direct Marketing Based on Fuzzy Clustering of Customers (Case Study: on one Mobile Company)

نویسندگان [English]

  • Gholamreza Jandaghi 1
  • Yaser Seif 2
  • Yaser Shojaie 3
1 Prof., Department of Public Administration, Faculty of Management and Accounting, Farabi Campus of Tehran University, Qom, Iran
2 Ph.D Candidate, Department of Education Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 Ph.D. Candidate, Department of Industrial Management, Faculty of Management and Accounting, Farabi Campus of Tehran University, Qom, Iran
چکیده [English]

Objective
There is a general tendency toward direct marketing these days. Therefore, instead of designing advertisement and marketing strategies for all the customers in the market, it is recommended to classify the customers based on clustering techniques and then design specific strategies accordingly. This will reduce marketing and advertisement expenses, increase sale department efficiently, build closer and quicker relationships with different customers and etc. There are a variety of clustering methods. Provided that clustering means classifying customers in different groups with maximum similarities within the groups and maximum difference among the groups, it may not be appropriate to apply such a rule in clustering customers (people) due to their nature. Hence, fuzzy clustering technique seems more appropriate for customers because there are no absolute borders considered among different groups just as the market suggests. This study, then, aims to emphasize on this concept in order to apply fuzzy clustering on market.
 
Methodology
This practical research is descriptive-exploratory in nature of data collection. The statistical population includes all the customers of a mobile company, but due to availability issues only a part of their customers would be involved in the present study. A questionnaire including 6 questions was distributed among those customers and only 760 were correctly responded. Finally, EXCEL and S-PLUS were used to analyze the data. 
 
Findings
The data in this study include three different parts of information. The first part includes some indexes selected for analysis of the clustering. Second part concerns with the customers service usage such as distant phone calls, free calls and wireless services. The third part refers to other mobile services provided for each customer. This part is presented in a binary fashion deciding whether a customer has received a specific service or not. Such services include activating more than one mobile line at the moment, using voicemail, paging, internet and other services. This algorithm was used to conduct fuzzy clustering in the present study. Following applying fuzzy clustering, only 2 clusters were judged appropriate for such data. The first cluster includes customers with lower income, job stability and lower loyalty to the mobile company, while the second cluster includes customers with higher income, higher job stability and more loyalty to the mobile company. The customers in the first cluster used services like free calls, wireless networks and pay phones. On the other hand, the customer in the second cluster mainly used services like distant calls and rarely used wireless services. In general, we can claim that paging services were the highest requested and then there are voicemail services, internet, and e-pay services respectively. The two clusters reported to have a similar tendency in using services such as voicemail, multi-lines, conferencing; yet, they were different in services like paging, internet, call forwarding (diverting), call waiting and e-pay services. At the end, mobile companies can set marketing strategies based on such findings.
 
Conclusion
It is suggested that mobile companies focus on general advertisements and distant call services, but only a little focus on wireless services. They can also put more thought on services like paging, voicemail, internet and e-pay services respectively. It is also recommended that, for female customers (mostly within the first cluster), the companies should focus on pay phone services, distant calls, and free calls as well as voicemail and internet. On the other hand, for male customer with higher job stability, it is suggested to focus the most on distant call services and provision of special discounts with this regard, but the least on wireless and pay phone services. Besides, voicemail services, paging, call waiting, call forwarding and e-pay services should be the mobile company’s priority for male customers.

کلیدواژه‌ها [English]

  • Direct marketing
  • Fuzzy clustering
  • Performance measures
  • Mobile services
  • Market segmentation
آخوندزاده نوقابی، الهام؛ البدوی، امیر؛ اقدسی، محمد (1393). کاوش پویایی مشتری در طراحی بخش‎بندی با استفاده از روش‎های داده‎کاوی. فصلنامه مدیریت فناوری اطلاعات، 6 (1)، 1-30.
خدابنده لو، سمیرا؛ نیک‎نفس، علی اکبر (1395). ارائه روشی برای بخش‎بندی مشتریان براساس میزان وفاداری آنها و تعریف راهبردهایی مناسب برای هربخش. فصلنامه مدیریت فناوری اطلاعات، 8 (1)، 101- 122.
کاتلر، فیلیپ؛ آرمسترانگ، گری (2006). اصول بازاریابی. ترجمه علی پارساییان (1383)، چاپ سوم، تهران: انتشارات ادبستان.
گیگان، وارن جی. (2004). مدیریت بازاریابی جهانی. ترجمه عبدالحمید ابراهیمی (1383)، چاپ اول، تهران: انتشارات دفتر پژوهش‌های فرهنگی.
فتحیان، محمد؛ اژدری, احسان (1396). استخراج الگوی رفتار مشتریان یک شرکت مخابراتی با استفاده از خوشه‌بندی پویای فازی و تحلیل مسیر. فصلنامه مدیریت فناوری اطلاعات؛ 9(3)، 549-570.
 
References
Akhondzadeh Noghabi, A., Albadvi, A. & Aghdasi, M. (2014). Mining customer dynamics in designing customer segmentation using data mining techniques. Information Technology Management, 6 (1), 1-30. (in Persian)
Bae, S.M., Ha, H. & Park, S.C. (2005). A web-based system for analyzing the voices of call center customers in the service industry. Expert Systems with Applications, 28(1), 29-41.
Bae, S.M., Park, S.C. & Ha, S.H. (2003). Fuzzy Web Ad Selector Based on Web Usage Mining. IEEE Intelligent Systems, 18(6), 62–69.
Bannon, T. & Declan, P. (2004). On fuzzy cluster validity indices. Fuzzy Sets and Systems, 158(19), 2095–2117.
Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191–203.
Bock, H. H. (1974). Automatische Klassifikation: Theoretische und praktische Methoden zur Gruppierung und Strukturierung von Daten (Cluster-Analyse) (Studia mathematica / Mathematische Lehrbucher) (Vol. 24). Vandenhoeck & Ruprecht.
Bonoma, T. V., & Shapiro, B. P. (1983). Industrial market segmentation: A nested approach. Marketing Science Institute, 83-100.
Bose, I. & Chen, X. (2014). Detecting temporal changes in customer behavior. In2014 International Electrical Engineering Congress (iEECON) (pp. 1–4).
Bose, I. & Chen, X. (2015). Detecting the migration of mobile service customers using fuzzy clustering. Information & Management, 52(2), 227–238.
Cheron, E. J., & Kleinschmidt, E. J. (1985). A review of industrial market segmentation research and a proposal for an integrated segmentation framework. International Journal of Research in Marketing, 2(2), 101-115.
Choporian, J.A., Witherell, R., Khalil, O.E.M. & Ahmed, M. (2001). Mind your business by mining your data. Advanced Management Journal, 66(2), 45.
Dennis, C., Marsland, D. & Cockett, T. (2001). Data Mining for Shopping Centres – Customer Knowledge-Management Framework. Journal of Knowledge Management, 5(4), 368–374.
Dolnicar, S. (2002). A review of data-driven market segmentation in tourism. Journal of Travel & Tourism Marketing, 12(1), 1-22.
Garda, R. A. (1981). Strategic segmentation: how to carve niches for growth in industrial markets. Management Review, 6, 19-25.
Ha, H., Bae, S.M. & Park, S.C. (2002). Customer’s time-variant purchase behavior and corresponding marketing strategies: An online retailer's case. Computers and Industrial Engineering, 43(4), 801–820.
Haley, R. I. (1968). Benefit segmentation: a decision-oriented research tool. The Journal of Marketing, 32(3), 30-35.
Khodabandelu, S., Niknafs, A. (2016). Proposing a New Method for Customer Segmentation Based on Their Level of Loyalty and Defining Appropriate Strategies for Each Segment. Information Technology Management, 8 (1), 65-82. (in Persian)
Kim, S.Y., Jung, T.S. & Suh, E. H. & Hwang, H.S. (2006). Customer segmentation and strategy development based on customer lifetime value: A case study. Expert Systems with Applications, 31(1), 101–107.
Mitchell, V. W., & Wilson, D. F. (1998). Balancing theory and practice: A reappraisal of business-to-business segmentation. Industrial Marketing Management, 27(5), 429-445.
Shaw, G. K., Robinson, J. (1989). Pioneers of Modern Economics in Britain, Vol. 2. Trans by: David Greenaway and John R. Presley, New York, St. Martin’s Press.
Smith, W. R. (1956). Product differentiation and market segmentation as alternative marketing strategies. The Journal of Marketing, 21(1), 3-8.
Wind, Y. (1978). Issues and advances in segmentation research. Journal of marketing research, 15(3), 317-337.
Wind, Y., & Cardozo, R. N. (1974). Industrial market segmentation. Industrial Marketing Management, 3(3), 153-165.
Wu, C. H., Kao, S. C., Su, Y. Y. & Wu, C. C. (2005). Targeting customers via discovery knowledge for the insurance industry. Expert Systems with Applications, 29(2), 291-299.
Yang, M. S. (1993). A survey of fuzzy clustering. Mathematical and Computer Modeling, 18(11), 1-16.
Yang, Y. & Padmanabhan, B. (2005). GHIC: A hierarchical pattern-based clustering algorithm for grouping Web transactions. IEEE Transactions on Knowledge and Data Engineering, 17(9), 1300-1304.