Agag, G., Durrani, B. A., Abdelmoety, Z. H., Daher, M. M. & Eid, R. (2024). Understanding the link between net promoter score and e-WOM behaviour on social media: The role of national culture. Journal of Business Research, 170, 114303. https://doi.org/10.1016/j.jbusres.2023.114303
Agag, G., Durrani, B. A., Shehawy, Y. M., Alharthi, M., Alamoudi, H., El-Halaby, S., Hassanein, A. & Abdelmoety, Z. H. (2023). Understanding the link between customer feedback metrics and firm performance. Journal of Retailing and Consumer Services, 73, 103301. https://doi.org/10.1016/j.jretconser.2023.103301
Ardelet, C. & Benavent, C. (2022). Does making less effort entail satisfaction? A large empirical study on client relationship services. International Journal of Market Research, 65(1), 83–99. https://doi.org/10.1177/14707853221113953
Asadi Ejgerdi, N. & Kazerooni, M. (2024). A stacked ensemble learning method for customer lifetime value prediction. Kybernetes, 53(7), 2342-2360. https://doi.org/10.1108/K-12-2022-1676
Baquero, A. (2022). Net promoter score (NPS) and customer satisfaction: relationship and efficient management. Sustainability, 14(4), 2011. https://doi.org/10.3390/su14042011
Bitencourt, V. N., Crestani, F., Peuckert, M. Z., Andrades, G. R. H., Krauzer, J. R. M., Cintra, C. de C., Cunha, M. L. da R., Eckert, G. U., Girardi, L., Santos, I. S. & Garcia, P. C. R. (2023). Net Promoter Score (NPS) as a tool to assess parental satisfaction in pediatric intensive care units. Jornal de Pediatria, 99(3), 296–301. https://doi.org/https://doi.org/10.1016/j.jped.2022.11.013
Bojanowska, A. & Milosz, M. (2017). Application of neural networks in CRM systems. In ITM Web of Conferences (Vol. 15, p. 04001). EDP Sciences. https://doi.org/10.1051/itmconf/20171504001
Bose, I. & Mahapatra, R. K. (2001). Business data mining—a machine learning perspective. Information & management, 39(3), 211-225. https://doi.org/10.1016/S0378-7206(01) 00091-X
Bosma, B. & van Witteloostuijn, A. (2024). Machine learning in international business. Journal of International Business Studies, 1-27. https://doi.org/10.1057/s41267-024-00687-6
Caton, S. & Haas, C. (2024). Fairness in machine learning: A survey. ACM Computing Surveys, 56(7), 1-38. https://doi.org/10.1145/3616865
Chen, S., Huang, Y., Xu, D.-L. & Jiang, W. (2020). A two stage machine learning approach for Modeling Customer Lifetime Value in the Chinese Airline Industry (S. Blanchard, A. Epp & G. Mallapragada (eds.); Vol. 31, pp. 1018–1021). American Marketing Association (AMA).
Cowan, G., Mercuri, S. & Khraishi, R. (2023). Modelling customer lifetime-value in the retail banking industry. https://doi.org/10.48550/arXiv.2304.03038
Curiskis, S., Dong, X., Jiang, F. & Scarr, M. (2023). A novel approach to predicting customer lifetime value in B2B SaaS companies. Journal of Marketing Analytics, 11(4), 587–601. https://doi.org/10.1057/s41270-023-00234-6
Dai, X. (2022, May). Customer Lifetime Value Analysis Based on Machine Learning. In Proceedings of the 6th International Conference on Information System and Data Mining (pp. 13-17). https://doi.org/10.1145/3546157.3546160
Dandis, A. O., Al Haj Eid, M. B., Robin, R. & Wierdak, N. (2022). An empirical investigation of the factors affecting customer lifetime value. International Journal of Quality & Reliability Management, 39(4), 910–935. https://doi.org/10.1108/IJQRM-12-2020-0412
Dandis, A. O., Al Haj Eid, M., Griffin, D., Robin, R. & Ni, A. K. (2023). Customer lifetime value: the effect of relational benefits, brand experiences, quality, satisfaction, trust and commitment in the fast-food restaurants. The TQM Journal, 35(8), 2526–2546. https://doi.org/10.1108/TQM-08-2022-0248
De Haan, E., Verhoef, P. C. & Wiesel, T. (2015). The predictive ability of different customer feedback metrics for retention. International Journal of Research in Marketing, 32(2), 195-206. https://doi.org/10.1016/j.ijresmar.2015.02.004
Firmansyah, E. B., Machado, M. R. & Moreira, J. L. R. (2024). How can Artificial Intelligence (AI) be used to manage Customer Lifetime Value (CLV)—A systematic literature review. International Journal of Information Management Data Insights, 4(2), 100279. https://doi.org/10.1016/j.jjimei.2024.100279
Fisher, N. I. & Kordupleski, R. E. (2019). Good and bad market research: A critical review of Net Promoter Score. Applied Stochastic Models in Business and Industry, 35(1), 138-151. https://doi.org/10.1002/asmb.2417
Gastezzi, C. E. B., Rodríguez, M. M. F. & Castillo, A. (2024). Theoretical foundations on Customer Experience (customer experience, NPS, CSAT, CES, Service Balcony, Journey Map). Journal of business and entrepreneurial studie, 8(2). https://doi.org/10.37956/jbes.v8i2.364
Hardianto, B. & Wijaya, S. (2023). Analysis of the impact of Net Promoter Score on financial performance with customer loyalty as mediation. International Journal of Social Service and Research, 3(6), 1478-1488. https://doi.org/10.46799/ijssr.v3i6.401
Hosseini Ravesh, S.M.H. & Moghadam, A. (2023). An Estimation of Customer Lifetime Value Based on Quality of Services in Mashhad Body Building Gyms. Applied Research in Sports Science and Health, 2(2), 19-36. https://civilica.com/doc/1783925. (in Persian)
Khadivar, A., Golestani, M. & Golshani, F. (2023). Predicting the ethical purchase intention of sustainable products in the circular business model through the behavior of customers/tourists using artificial neural network (ANN). Tourism Management Studies, 18(62), 203 - 240. (in Persian)
King, M., Kim, B.J. & Yune, C.-Y. (2024). Prediction model of undisturbed ground temperature using artificial neural network (ANN) and multiple regressions approach. Geothermics, 119, 102945. https://doi.org/10.1016/j.geothermics.2024.102945
Kristensen, K. & Eskildsen, J. (2014). Is the NPS a trustworthy performance measure? The TQM Journal, 26(2), 202-214. https://doi.org/10.1108/TQM-03-2011-0021
Kumar, R., Aggarwal, R. K. & Sharma, J. D. (2015). Comparison of regression and artificial neural network models for estimation of global solar radiations. Renewable and Sustainable Energy Reviews, 52, 1294-1299. https://doi.org/10.1016/j.rser.2015.08.021
Kvíčala, D., Králová, M. & Suchánek, P. (2024). The impact of online purchase behaviour on customer lifetime value. Journal of Marketing Analytics, 1-18. https://doi.org/10.1057/s41270-024-00328-9
Lee, H. F. & Jiang, M. (2021). A hybrid machine learning approach for customer loyalty prediction. In Neural Computing for Advanced Applications: Second International Conference, NCAA 2021, Guangzhou, China, August 27-30, 2021, Proceedings 2 (pp. 211-226). Springer Singapore. https://doi.org/10.1007/978-981-16-5188-5_16
Li, X., Tang, X. & Cheng, Q. (2022). Predicting the clinical citation count of biomedical papers using multilayer perceptron neural network. Journal of Informetrics, 16(4), 101333. https://doi.org/10.1016/j.joi.2022.101333
Mohammadi, E. & Rezaei, Z. (2014). An Examination of Relation between Management of Customer Relationship with Quality of Relationship and Customers' Lifetime Value in Hotel Industry (Case study: City of Ilam). Journal of Tourism Planning and Development, 4(15), 62-79. https://civilica.com/doc/1617905. (in Persian)
Moradi, Z. & Fakhraei, M. & Azad Aramaki, A. (1401). Investigating the effect of customer knowledge management on customer lifetime value with the mediation of organizational agility (case study: Farsgal Plast Company). Journal of management Science Research, 4(10), 189-209. (in Persian)
Müller, S., Seiler, R. & Völkle, M. (2024). Should Net Promoter Score be supplemented with other customer feedback metrics? An empirical investigation of Net Promoter Score and emotions in the mobile phone industry. International Journal of Market Research, 66(2-3), 303-320. https://doi.org/10.1177/14707853231219648
Osmanski-Zenk, K., Ellenrieder, M., Mittelmeier, W. & Klinder, A. (2023). Net Promoter Score: a prospective, single-centre observational study assessing if a single question determined treatment success after primary or revision hip arthroplasty. BMC Musculoskeletal Disorders, 24(1), 849. https://doi.org/10.1186/s12891-023-06981-y
Owen, R. (2019). Net Promoter Score and Its Successful Application. In: Kompella, K. (eds) Marketing Wisdom. Management for Professionals. Springer, Singapore. https://doi.org/10.1007/978-981-10-7724-1_2
Rahimiaghdam, S., Faryabi, M. & Azizkhah Alanagh, S. (2021). The Impact of Relationship Marketing on Customer Lifetime Value with the Mediating Role of Relationship Quality. Commercial Surveys, 18(105), 71-84. (in Persian)
Ruck, D. W., Rogers, S. K. & Kabrisky, M. (1990). Feature selection using a multilayer perceptron. Journal of neural network computing, 2(2), 40-48.
Schmidgall, S., Ziaei, R., Achterberg, J., Kirsch, L., Hajiseyedrazi, S. & Eshraghian, J. (2024). Brain-inspired learning in artificial neural networks: a review. APL Machine Learning, 2(2). https://doi.org/10.1063/5.0186054
Schmitt, P., Meyer, S. & Skiera, B. (2012). An Analysis of the Link between Customers’ Intention to Recommend a Firm and the Lifetime Value of its Customers. Recherche et Applications En Marketing (English Edition), 27(4), 121–142. https://doi.org/10.1177/205157071202700405
Sifa, R., Runge, J., Bauckhage, C. & Klapper, D. (2018). Customer Lifetime Value Prediction in Non-Contractual Freemium Settings: Chasing High-Value Users Using Deep Neural Networks and SMOTE. Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2018.115
Simpson, T. (2023). Impact of Financial and Nonfinancial Constructs on Customer Lifetime Value (CLV): U.S. Retailer’s Perspective. Journal of Relationship Marketing. https://doi.org/10.1080/15332667.2023.2197769
Specht, D. F. (1991). A general regression neural network. IEEE transactions on neural networks, 2(6), 568-576.
Tsai, C. F., Hu, Y. H., Hung, C. S. & Hsu, Y. F. (2013). A comparative study of hybrid machine learning techniques for customer lifetime value prediction. Kybernetes, 42(3), 357-370. https://doi.org/10.1108/03684921311323626
Tudoran, A. A., Thomsen, C. H. & Thomasen, S. (2024). Understanding consumer behavior during and after a Pandemic: Implications for customer lifetime value prediction models. Journal of Business Research, 174, 114527. https://doi.org/10.1016/j.jbusres.2024.114527
Valentini, T., Roederer, C. & Castéran, H. (2024). From redesign to revenue: Measuring the effects of servicescape remodeling on customer lifetime value. Journal of Retailing and Consumer Services, 77, 103681. https://doi.org/10.1016/j.jretconser.2023.103681
Venkatesan, R., Bleier, A., Reinartz, W. & Ravishanker, N. (2019). Improving customer profit predictions with customer mindset metrics through multiple overimputation. Journal of the Academy of Marketing science, 47, 771-794. https://doi.org/10.1007/s11747-019-00658-6
Wu, Y. C. & Feng, J. W. (2018). Development and application of artificial neural network. Wireless Personal Communications, 102, 1645-1656. https://doi.org/10.1007/s11277-017-5224-x
Yan, Y., & Resnick, N. (2024). A high-performance turnkey system for customer lifetime value prediction in retail brands: Forthcoming in quantitative marketing and economics. Quantitative Marketing and Economics, 22(2), 169-192. https://doi.org/10.1007/s11129-023-09272-x
Ziegler, A., Peisl, T. & Raeside, R. (2023). Improving service quality through customer feedback – the case of NPS in IBM’s training services. International Journal of Quality and Service Sciences, 15(2), 190–203. https://doi.org/10.1108/IJQSS-09-2022-0106