خوشه‌بندی مشتریان بانک با استفاده از شبکه‌های عصبی رقابتی

نوع مقاله: مقاله علمی پژوهشی

نویسنده

استادیار گروه مدیریت صنعتی دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد

چکیده

بخش‌بندی مشتریان، فرصتی برای توجه به نیازهایی است که در پرتو بازاریابی انبوه مجالی برای ابرازشان نبوده است. هدف اولیه‌ی بخش‌بندی یافتن و حفظ مشتریانی است که قصد ارائه‌ی خدمت به آن‌ها را داریم. در این پژوهش خوشه‌بندی مشتریان بانک با استفاده از شبکه‌های عصبی مصنوعی رقابتی و روش‌های آماری سنتی با یکدیگر مقایسه شده‌اند. برای خوشه‌بندی مشتریان، 7 مشخصه‌ی کلیدی 600 مشتری از مشتریان یک بانک استخراج شده است. با استفاده از یک شبکه‌ی عصبی رقابتی و همچنین روش آماری وارد خوشه‌بندی مشتریان انجام گرفته و نتایج حاصل با استفاده از روش تحلیل تمایزات و شاخص‌های MAPE و RMSE با یکدیگر مقایسه شده است. مقایسه‌ی خوشه‌بندی‌های انجام شده، برتری قابل توجه شبکه‌ی عصبی رقابتی بر روش آماری وارد را نشان می‌دهد. خوشه‌بندی با استفاده از شبکه‌های عصبی رقابتی نقطه‌ی قوت و نوآوری این مقاله است. به خصوص که رفع نرون مرده در شبکه‌های عصبی رقابتی مورد تأکید قرار گرفته است. این مهم با استفاده از ترم بایاس در شبکه‌ی عصبی رقابتی، قابل دستیابی است که در این مقاله بر آن تأکید شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Clustering Bank's Customers Using Artificial Neural Networks

نویسنده [English]

  • Ali Morovati Sharifabadi
Assistant Professor of industrial management, Yazd University
چکیده [English]

Customer's Clustering is an instrument for considering the needs which were not allowed to be expressed due to mass marketing. The primary goal of market segmentation is to find and retain those customers we want to serve. In this paper, we present the experimental results of clustering bank's customers using artificial neural networks (ANN) compared with traditional statistical methods. To cluster the customers, 7 key distinctive characteristics of 600 customers of a bank were extracted. Customers’ clustering was performed using ANN and a powerful statistical method: Ward Method. The results were compared using discriminant analysis, MAPE and RMSE. The comparisions indicate the superiority of ANN output over WARD. Clustering by ANN indicates the strength and innovation of this study. Furthermore, focusing on importance of solving the death neuron problem in artificial neural networks by BIAS term is a contribution of this paper.

کلیدواژه‌ها [English]

  • Customer's Clustering
  • Dead unit
  • Discriminant Analysis
  • Haming
  • Ward Method
احمدی، پ.؛ آذر، ع. و صمصامی، ف. ( 1389 ). بخش بندی بازار دارو با رویکرد شبکه های عصبی (مطالعة
.1-20 :(6) موردی: بازار دارو در ایران)، مدیریت بازرگانی، 2
خوشه بندی مشتریان بانک با استفاده از شبکه های عصبی رقابتی 203
راکعی، ب.؛ خام هچیان ، م.؛ عبدالملکی، پ . و گیاهچی، پ . ( 1386 ). کاربرد سیستم شبکة عصبی
مصنوعی در پهنه بندی خطر زمین لغزش، مطالعة موردی: ناحیة سفیدار گله در استان سمنان .
.57-64 :(1) مجله علوم دانشگاه تهران، 33
شم آبادی، م.ع. و خدادادحسینی، س.ح. ( 1386 ). بازاریابی صادراتی فرش دستبافت ایران: بررسی عوامل
.1-34 :(11) مؤثر و آسی بشناسی، فصلنامة پژوهشنامة بازرگانی، 43
مرتضوی، س.؛ کفا شپور، آ.؛ حبیب یراد، آ. و آسمان دره، ی. ( 1388 ). بخش بندی بازار بانک های مشهد بر
.126 -161 :(29) مبنای مزایای مورد انتظار مشتریان، دانش و توسعه، 17
مرتضوی، س. آسمان دره، ی.؛ نجفی سیاهرودی، م. و علوی، س.م. ( 1390 ). بخش بندی بازار گوشی
.115 -132 :(8) تلفن همراه بر مبنای مزایای مورد انتظارمشتریان، مدیریت بازرگانی، 3
ملاحسینی، ع. و علی میرزایی، غ. ( 1389 ). بخش بندی و شناسایی ویژگی های مشتریان گروه های ایران
.135 -146 :(6) خودرو و سایپا در شهر کرمان، مدیریت بازرگانی، 2
منهاج، م.ب. ( 1384 ). مبانی شبک ههای عصبی، چاپ سوم. تهران: انتشارات دانشگاه صنعتی امیرکبیر.
میرغفوری، س. ح.؛ طاهری دمنه، م. و زارع احمدآبادی، ح. ( 1388 ). ارزیابی روش های سنجش کیفیت
.63-79 :(8) خدمات به وسیلة شبکه های عصبی مصنوعی. چش مانداز مدیریت، 31
نبی زاده شهربابکی، ف.؛ صفرنیا، ح. و عباسی، ع. ( 1390 ). بررسی نقش و جایگاه عوامل مؤثر در کیفیت
خدمات بر روی رضایتمندی مشتریان کلیدی بانک های دولتی شهرستان کرج، مدیریت بازرگانی،
.161 -176 :(7)3
Balakrishnan, P.V., Cooper, M.C., Jacob, V.S., Lewis, P.A. (1996).
Comparative Performance of the FSCL Neural Network & K-Means
Algorithm for Market Segmentation, European Journal of
Operational Research, 93 (2): 346-357.
Bloom, J.Z. (2005). Market segmentation: A neural net work application,
Annals of Tourism Research, 32 (1): 43-111.
Boone, D., Rochm, M. (2002). Retail Segmentation using Artificial Neural
Networks, International Journal of Research in Marketing, 19(3):
287-301.
Cohen, R. (2001). Latent Segmentation Models: New Tools to Assist
Researchers in Market Segmentation, Marketing Research, 10 (2):
15-21.
ی، دورة 6، شمارة 1، بهار 1393 􀨩 بازرگا 􀢌􀦶􀭌د􀥠 204
Curry, B., Mutinho, L. (1993). Neural Networks in in Marketing: Modeling
Consumer Responses to Advertizing. European Journal of Marketing,
27 (7): 5-20.
Danneels, E. (1996). Market Segmentation: Normative models versus
Business reality. European Journal of Marketing, 30 (6): 36-51.
Davis, F., Geode, M., Mazanec, J. (1999). Lisrel & Neural Network
Modeling two Comparison Studies, Journal of Retailing & Consumer
Services, 6 (4): 242-261.
Fish, K.E., Barnes, J.H. Aiken. (1995). Artificial Neural Networks: a New
Methodology for Industrial Market Segmentation, Industrial
Marketing Management, 24 (5): 431-438.
Gorr, W. L., Nagin, D. (1994). Comparative Study of Artificial Neural
Network and Statistical Models for Predicting Student Grade Point
Averages. International Journal of Forecasting, 10 (1): 17-34.
Grover, R., Srinivasan, V. (1989). An Approach for Tracking within-
Segment Shifts in Market Shares, Journal of Marketing Research, 26
(2): 230-236.
Hornik, K., Stinchcombt, M., White, H. (1989). Multilayer Feed Forward
Networks are universal Approximators, Neural Networks, 2 (5): 359-
366.
Hruschka, H. (1993). Determining Markets Response Functions by Neural
Network Modeling: a Comparison to Econometric Techniques.
European Journal of Operational Research, 66 (1- 2): 27-35.
Kadambi R. (2005). Analysis of data mining techniques for customer
segmentation and predictive modeling. Thesis for Master of Science,
State University of New York, Binghamton.
Kalafatis, S.P.K, Tsogas, M.H. (1998). Congruence of Adopted
Segmentation Strategies and Perceived Effectiveness of Segmentation
Bases, Journal of Segmentation in Marketing, 2: 36-63.
Kim, J., Wey S., Ruys, H. (2003). Segmenting the market of west Australian
senior tourists using on artificial neural network. Tourism
Management, 24 (1): 25-34.
خوشه بندی مشتریان بانک با استفاده از شبکه های عصبی رقابتی 205
Kim, J, Ahn, H. (2008). A recommender system using GA K-means
clustering in an online shopping market. Expert Systems with
Applications, 34 (2): 1200-1209.
Kuang, Wei, Kuo, Fang. (2002). Market Segmentation via Structured Click
Stream Analysis, Industrial Management & Data Systems, 102 (9):
493 - 502.
Kuo R.J, Ho, L.M, Hu C.M. (2002). Integration of self-organizing feature
maps and k-means algorithms for market segmentation. Computers &
operations research, 29 (11): 1475-1493.
Kuo, R. J. (2001). A Sales Forecasting System Based on Fuzzy Neural
Network with Initial Weights Generated by Genetic Algorithm.
European Journal of Operational Research, 129 (3): 496-517.
Kuo, R.J, Wang, H.S, Hu, Tung-L, Chou, S.H. (2005). Application of Ant
K-means on clustering analysis. Computer & mathematics with
applications, 50 (10-12): 1709-1724.
Law, R. (1999). A Neural Network Model to Forecast Japanese Demand for
Travel to Hong-Kong. Tourism Management, 20 (1): 81-97.
Lee, M.T.H. (2003). A Bayesian neural network model of consumer choice.
Dissertation for the degree of Doctor of philosophy, University of
Toronto.
Linder, R, Geier J, Kolliker, M. (2004). Artificial neural networks,
classification trees and regression: which method for which customer
base? Journal of Database Marketing & Customer Strategy
Management, 11 (4): 344-356.
Liu, Y. (2007). Multicriterion market segmentation: A unified model
implementation and evaluation. Dissertation for the degree of PHD,
The University of Arizona, Arizona.
Mahajan, V., Jain, A.K.. (1978). An Approach to Normative Segmentation,
Journal of Marketing Research, 15 (3): 338-345.
Mazanec, J. (1992). Classifying Tourists into Market Segments: A Neural
Network Approach, Journal of Travel and Tourism Marketing, 1 (1):
39–59.
ی، دورة 6، شمارة 1، بهار 1393 􀨩 بازرگا 􀢌􀦶􀭌د􀥠 206
Mazanec, J.A.. (1999). Simultaneous Positioning & Segmentation Analysis
with topologically Ordered Feature Map: a Tour Operator Example,
Journal of Retailing & Consumer Services, 6 (4): 212-235.
McDonald, M. & Dunbar, I. (1995). Market segmentation: A Step-by-Step
Approach to Creating Profitable Market Segments, London:
Whitaker.
Neal, W. (2001). Multidimensional Segmentation, Journal of Marketing
Research, 41: 12-18.
Razi, M.A., Athappilly, K. (2005). A comparative predictive analysis of
neural networks (NNs), nonlinear regression and classification and
regression tree (CART) models. Expert Systems with Applications, 29
(1): 65- 74.
Szczypula, J. (2001). Forecasting Aggregate Retail Sales: a Comparison of
Artificial Networks can Learn Arbitary Mappings. Neural Networks,
3: 355-542.
Venugopal V., Baets, W. (1994). Neural Networks and Statistical
Techniques in Marketing Research: A Conceptual Comparison,
Marketing Intelligence and Planning, 12(7): 30–38.
West, P., Brocket, P.L., Golden, L. (1997). A Comparative Analysis of
Neural Networks & Statistical Methods for Predicting Consumer
Choice, Marketing Science, 16(4): 370-391.
Wind, Y. (1978). Issues and Advances in Segmentation Research, Journal of
Marketing Research, 15(3): 317-337.